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For large radiation densities, when the thermal model of surface vaporization becomes 
inapplicable, the vaporization and motion of the resulting vapor can be treated in the frame- 
work of a gasdynamical description of the flow [i]. For liquid metals the limit of applica- 
bility of the thermal model corresponds to intensities of I = 108-109 W/cm 2 [2], while for 
a dielectric liquid it is about five or six orders of magnitude smaller because of the onset 
of fluctuational vaporization of the liquid [3]. 

The gasdynamical treatment of the vaporizing interaction between light and matter is 
based on the solution of gasdynamical equations in which the phase transition is taken into 
account either by replacing the equation of state of the liquid by that of the vapor when 
the phase transition takes place without an interface [4], or in the opposite case by intro- 
ducing a strong gasdynamical rupture, which replaces the phase transition region [i]. The 
first approach (unlike the second) is appropriate for high laser intensities, for which the 
phase trajectory of the medium passes above the phase equilibrium curve. 

The gasdynamical rupture was used in [5] to consider the interaction of radiation (~ = 
10.6 pm) with water and the flow of the resulting vapor in an atmosphere of surrounding air. 
The Jouget condition was used, which assumes that the velocity of the escaping vapor is equal 
to the local speed of sound. In the general case of variable intensity or high back-pressure 
this assumption is incorrect. 

In the ]present paper we use the numerical method of Godunov (involving moving grids 
[6]) to solw~ the problem of the vaporization of water and the motion of the resulting vapor 
into the surrounding air atmosphere for the case when the incident intensity is time depen- 
dent. Unlike the treatment of [5], here we use a model based on the nonadiabatic, radiation- 
induced destruction of the liquid-vapor interface to obtain general relations for the gas- 
dynamical parameters of the vapor above the liquid surface. These parameters then give the 
boundary conditions for the flow of the vapor into the atmosphere of surrounding air. 

Formulation of the Problem and Method of Solution. A one-dimensional picture of the 
gasdynamical motion of matter when the surface of a liquid is exposed to intense radiation 
is shown in ]Fig. i. The layer of vapor formed as a result of the interaction expands because 
of the pressure drop and pushes against a layer of air, which is separated from the vapor 
by the surface 3, and from the unperturbed atmosphere by a shock wave 4. Because of the 
reaction of the vapor, a force acts on the surface of the liquid 2, which excites acoustic 
waves 1 in the liquid. 

The propagation of laser radiation in an absorbing medium is described by Bouguer's 
law 

oI/ox = kZ, ( 1 )  
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where the absorption index k is zero for air, while in the vapors of liquids it is given 
by the expression k = k0(p/p0) 2 from [4]; k0 = 830 cm -I, P0 = 1 g/cm 3 are the absorption 
coefficient and density of water. The air and water vapor were both assumed to be ideal 
gases with corresponding adiabatic indices of ~a = 1.4 and ~v = 1.3. 

The method of [6] was used to specify the boundary conditions on the moving surfaces 
of the computational region. These boundaries coincide with the air-vapor interface and 
the shock wave. The boundary conditions for the vapor on the vapor-liquid interface were 
found, assuming that the destruction of the liquid-vapor interface under the action of the 
radiation is a nonadiabatic process. 

Nonadiabatic Destruction of the Liquid-Vapor Interface. We model the phase transition 
region as a strong gasdynamical rupture, and in the notation of Fig. i we write down the 
integral identities following from the conservation laws of mass, momentum, and energy for 
a contour enclosing the rupture [6]: 
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Here p is the density; p, pressure; e, internal energy per unit mass of gas; v, velocity; 
I, intensity of the radiation. Linearization of (2) in the small parameters P2'/Pz', v1'/ 
c, e1'/e2' gives a simpler set of relations: 
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An important conclusion following from (3) is that the velocity of motion D of the phase 
transition boundary can be neglected in comparison with the velocity of motion of the vapor 
v2'. In this case, most of the energy is carried off by the vaporized material, and the 
liquid obtains a reactive momentum equal to the momentum of the escaping vapor. Hence, the 
vaporization process can be treated assuming an unperturbed liquid. Then, using the calcu- 
lated reactive pressure, one can compute the excitation of sound in the liquid [7]. The 
system of equations (3) contains five unknowns, of which two can be determined by considering 
the vaporization mechanism of the liquid and the flow pattern of the vapor. 

When a dielectric liquid is exposed to intense radiation, boiling of the liquid through- 
out the volume of the liquid results. The liquid transforms into a metastable state, and 
because of fluctuational nucleation, vapor bubbles growrapidly [8]. The rate of nucleation 
increases exponentially as the liquid approaches the stability boundary, which is deter- 
mined by the spinodal curve. For the case of water considered here, the spinodal curve re- 
lating the pressure and temperature of the boiling liquid has the form [9] 

T = T ,  (0.9 + O A p / p , ) ,  (4)  

where T, = 647 K and p, = 221-105 Ya are the critical temperature and pressure. An analysis 
of the kinetics of volume boiling shows that the time required to establish quasisteady va- 
porization in the phase transition layer does not exceed several nanoseconds [9]. This value 
of the time is taken as the limit of applicability of the strong rupture model for the vol- 
ume mechanism of the boiling of the liquid. 

When the pressure of the liquid is above the critical pressure, Eq. (4) is inapplicable 
since the transition of liquid into vapor occurs without any sudden change of state and the 
difference between the two phases is nominal. Here it is necessary to solve a purely hydro- 
dynamical problem for a continuous state of the medium [4]. However, according to [i], the 
rupture model can be extended to supercritical pressures. Let p* be the density for which 
the vapor is transparent to radiation, which therefore defines the right boundary of the 
rupture in the vapor region. The value of p* is given by the condition that the liquid has 
reached the critical pressure 

p* = p,/(~ + t) BT. .  (5) 
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Fig. 2 

This definition of the maximum vapor density on the outer boundary of the rupture is ques- 
tionable, but it is shown in (7) that the dependence of the pressure on this quantity is 
weak, going as the cube root. 

If we assume that the vapor has the temperature of the boiling liquid, then (4) is an 
additional relation between the vapor temperature T 2' and the pressure of the liquid Pl'. 
In the opposite case, (5) gives the additional relation. 

The last missing relation is found by considering the flow pattern of the vapor onto 
the adjoining layer of gas. The gasdynamical solution for the flow of the vapor will be 
sought within the class of possible self-modeling solutions for the adiabatic destruction 
of an arbitrary rupture [i0]. 

Let the parameters of the gas bounding the liquid have the values P4, P4, v~. If v 2' 
and P2' of the inflowing vapor satisfy the condition 

v2--v4<(p2--pt) P, -'y--P2 +'~J-P4)] , (6) 

then flow accompanied by propagation of rarefaction waves toward the surface of the liquid 
and against the flow is possible. Steady-state values of the gasdynamical parameters on 
the boundary can result only when the velocity of the incoming vapor is equal to the local 
speed of sound. In this case, as in [i], we have a self-modeling flow pattern (Fig. 2a). 
The simultaneous solution of the system of equations (3) with the additional relation (4) 
or (5) and the condition that the velocity of the incoming vapor be equal to the local 
speed of sound gives the following analytical expression for the boundary values of the pa- 
rameters of the inflowing vapor: 

' i ~ ~ ( ~ + i )  p,=l/[(• ( 2 ( ~ . 1 )  -~H-~,)], (7 )  
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Here ~ is the adiabatic index of the liquid vapor; L, latent heat of vaporization; R, spe- 
cific gas constant for the vapor. As one approaches the critical point, the properties of 
the liquid and vapor vary sharply; for example, the latent heat of vaporization goes to 
zero. It would be difficult to take into account the variation of these properties analyti- 
cally and, therefore, in the framework of the ideal gas model, the adiabatic index and latent 
heat of vaporization are assumed to be constants. In addition, for supercritical pressures, 
where the latent heat of vaporization should be rigorously zero, we assume it remains equal 
to the value in the subcritical region in order to obtain a smooth dependence of the reac- 
tion pressure on the radiation intensity at the critical point. For large pressures this 
error goes ~way, since the term containing the latent heat of vaporization in (5) goes to 

zero. 

If the parameters of the inflowing vapor found in (7) do not satisfy condition (6), 
then the inflowing vapor cannot have the speed of sound because a shock wave must propagate 
toward the surface of the liquid, which destroys the sonic flow regime. In this case the 
solution is found as follows. If the pressure found formally from (7) satisfies Pz' > P4 
and the velocity v z' does not satisfy condition (6), then the solution corresponding to 
steady-state boundary conditions is found for the flow pattern in Fig. 2b, which corresponds 
to a uniform gas flow with parameters P2', v2', T=' related adiabatically to the parameters 
of the external medium P4, v4, T 4. The boundary parameters of the inflowing vapor are found 
from the simultaneous solution of the following system of transcendental algebraic equations: 
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, =  r,(o.9+ O.tpa/p,)(p,<p,), 03=0 (p~>p,). 
If the parameters of the inflowing vapor obtained formally in (7) satisfy the condition 

v~ ~ v4 - -  [2/ ( •  - -  I ) I  ( •  ~I~ [ I  - -  (p'Jp~)(x-x)lz'~] ( 9 )  

and P2' < P4, then we have the flow pattern of Fig. 2c with two rarefaction waves propagat- 
ing against the flow and along the flow. In this case the boundary parameters are given 
by (7). If the pressure obtained formally from (7) satisfies P2' < P4, while the velocity 
v2' does not satisfy condition (9), then depending on the direction of the inequality 
p~v#(Xp4/(X - l)p4 + v#2/2 + L) ~ I the flow has the form shown in Fig. 2b (for ~) or Fig. 
2d (for >). The values of the boundary parameters for Fig. 2b are given by (8). The flow 
pattern of Fig. 2d corresponds to propagation of rarefaction waves downward along the flow 
and the values of the boundary parameters are found from the condition that the velocity 
of motion of the gas on the left boundary be equal to the velocity of the rarefaction wave 

t t 
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The solutions (7), (8), and (i0) exhaust the possible gasdynamical flow regimes induced 
by laser irradiation of the surface of a liquid dielectric. 

The destruction of the rupture was considered at each time step for values of the radi- 
ation intensity at the surface and parameters of the external gas taken in the boundary cell 
of the grid at the preceding time step. The absorption of radiation in the water vapor was 
taken into account by adding a bulk heat production term kl to the energy balance difference 
equation. In this case a "large number" was defined by considering the destruction of an 
arbitrary rupture, as in the case of adiabatic flow [6]. 

Results of the Calculations. Numerical results were obtained for two forms of the de- 
pendence of the radiation intensity on time. The first case was a step-function intensity 
and involved a study of the transient process of establishing the flow. The second example 
was the experimentally observed shape of the radiation in pulse CO 2 lasers. Figure 3 shows 
the results for the computed time-dependence of the static pressure and Mach number on the 
liquid boundary for a step-function radiation intensity (curves 1-3 correspond to the Mach 
number, pressure, and intensity of the radiation, respectively). The time to establish the 
new self-modeling flow is determined in general by the duration of the preradiation and by 
the magnitude of the jump in the intensity. The calculations were done neglecting absorp- 
tion by the water vapor. It is evident from Fig~ 3 that when the duration of preradiation 
is i ~sec, the duration of the transient is approximately proportional to the magnitude of 
the jump in the intensity (2-10 ~sec). In [Ii] thermal surface vaporization of a liquid 
metal was considered and the time to establish the flow depended on the characteristic heat 
conduction and gasdynamical flow times. In contrast, in our case it is determined solely 
by the gasdynamics and does not involve the characteristic time to establish bulk fluctua- 
tional vaporization. This time is about ~i0 -9 sec, and it was set equal to zero in the cal- 
culations. 

Figure 4 shows the response of the gasdynamical parameters of the medium at different 
times to a jump in the intensity (1:0.25). Curves 1 and 2 shows the pressure and veloc- 
ity profiles at t = i, 5, 13 ~sec, and curves 3 and 4 show the density and temperature at 
t = 13 ~sec. It is evident that the time required to establish the new self-modeling flow 
is determined by the resorption time of the "wake" from the initial intensity of the radia- 
tion. 

The calculated results for the model dependence of the laser radiation are shown in 
Fig. 5, where curves 1-4 show the dependence of the static pressure, Mach number, intensity 
of the radiation, and reaction pressure Pr on time. It is evident from the results that the 
escape velocity of the vapor for the duration of the radiation spike remains sonic, except 
for the front edge of the spike, which is not resolvable in the figure, and the tail end 
of the spike, where the velocity dips. The velocity then increases, approaching the sonic 
value and toward the end of the pulse it falls rapidly. 

Comparison of the Pr calculated on the surface of the liquid with the pressure calcu- 
lated assuming that vapor escapes with the speed of sound shows close agreement up to the 
end of the laser pulse. The difference at t = 2 Dsec is 4%, and at t = 2.5 ~sec it is 10%. 
However, in many practical cases these differences can be neglected and then the reaction 
impulse can be found by using analytical expressions for the sonic emission regime as given 
by (7). 

The calculations for a special form of the radiation and for a model absorption coeffi- 
cient show that the effect on the flow pattern of absorption of the radiation by water vapor 
is insignificant. The difference in the results does not exceed 10%. In the case of a li- 
quid with strongly absorbing vapor (this can also occur for the plasma interaction regime 
of radiation with water) the approximation of emission at the speed of sound becomes inap- 
plicable, and then the calculations must be done according to the model discussed here. 

Finally, we note that the approximate expression for the reaction pressure p (Pa) = 
2.6 1 (W/cm 2) obtained from (7) is in good agreement with the experimental results [3]. 
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APPROXIMATE SCALING LAWS OF HOMOGENEOUS CONDENSATION 

IN EXPANDING SUPERSONIC GAS FLOWS 

S. A. Palopezhentsev UDC 533.011.8:536.423.4 

Due to the extreme complexity of the process of nucleation and growth of condensed- 
phase particles, the problem of gas flow with condensation cannot be solved analytically 
even with simple unidimensional flow models. The author of [i] used the example of flows 
of a condensing gas in supersonic nozzles and analyzed the corresponding dimensionless equa- 
tions to show that exact modeling is also impossible. At the same time, the existence of 
differentempirically established correlations connected with condensation in supersonic 
flows suggests that it is possible to find approximate similarity. There has been a whole 
range of studies devoted to establishing approximate scaling laws for condensation in expand- 
ing supersonic gas flows. The difference in the approach to the solution of the given prob- 
lem and in the formulations and the generality of the resulting laws make it incumbent to 
conduct a comparative analysis of these investigations. 

The study [2] was the first investigation to sufficiently thoroughly establish the scal- 
ing conditions, using as an example the approximate solution of the problem of condensation 
in a cloud of a vaporized substance during spherical dispersion into a cavity. Condensation 
kinetics was described by using the classical Frenkel-Zeldovich formula for the rate of for- 
mation of critical nuclei as a function of the degree of supercooling ~: I = cexp(-b/~2). 
Here, ~ = (Tp - T)/Tp (Tp is the temperature of vapor saturated at the given density). The 
extremely heavy dependence of the rate of nuclei formation on the degree of supercooling 
leads to a situation whereby most of the condensation centers ~ are formed on a very small 
section of the expansion stage corresponding to maximum supercooling ~m: 

m~ 

= S Idt '  ,~ I (~,n) At~ 
f$ 
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